scholarly journals Fast, accurate, and reproducible automatic segmentation of the brain in T1-weighted volume MRI data

Author(s):  
Louis Lemieux ◽  
Georg Hagemann ◽  
Karsten Krakow ◽  
Friedrich G. Woermann
2019 ◽  
Vol 8 (4) ◽  
pp. 2051-2054

Medical image processing is an important task in current scenario as more and more humans are diagnosed with various medical issues. Brain tumor (BT) is one of the problems that is increasing at a rapid rate and its early detection is important in increasing the survival rate of humans. Detection of tumor from Magnetic Resonance Image (MRI) of brain is very difficult when done manually and also time consuming. Further the tumors assume different shapes and may be present in any portion of the brain. Hence identification of the tumor poses an important task in the lives of human and it is necessary to identify its exact position in the brain and the affected regions. The proposed algorithm makes use of deep learning concepts for automatic segmentation of the tumor from the MRI brain images. The algorithm is implemented using MATLAB and an accuracy of 99.1% is achieved.


2008 ◽  
Vol 27 (6) ◽  
pp. 1235-1241 ◽  
Author(s):  
Artem Mikheev ◽  
Gregory Nevsky ◽  
Siddharth Govindan ◽  
Robert Grossman ◽  
Henry Rusinek

Author(s):  
D. L. Collins ◽  
A. C. Evans

Magnetic resonance imaging (MRI) has become the modality of choice for neuro-anatomical imaging. Quantitative analysis requires the accurate and reproducible labeling of all voxels in any given structure within the brain. Since manual labeling is prohibitively time-consuming and error-prone we have designed an automated procedure called ANIMAL (Automatic Nonlinear Image Matching and Anatomical Labeling) to objectively segment gross anatomical structures from 3D MRIs of normal brains. The procedure is based on nonlinear registration with a previously labeled target brain, followed by numerical inverse transformation of the labels to the native MRI space. Besides segmentation, ANIMAL has been applied to non-rigid registration and to the analysis of morphometric variability. In this paper, the nonlinear registration approach is validated on five test volumes, produced with simulated deformations. Experiments show that the ANIMAL recovers 64% of the nonlinear residual variability remaining after linear registration. Segmentations of the same test data are presented as well. The paper concludes with two applications of ANIMAL using real data. In the first, one MRI volume is nonlinearly matched to a second and is automatically segmented using labels, predefined on the second MRI volume. The automatic segmentation compares well with manual labeling of the same structures. In the second application, ANIMAL is applied to seventeen MRI data sets, and a 3D map of anatomical variability estimates is produced. The automatic variability estimates correlate well (r =0.867, p = 0.01) with manual estimates of inter-subject variability.


Author(s):  
Fatma Taher ◽  
Neema Prakash

Cerebrovascular diseases are one of the serious causes for the increase in mortality rate in the world which affect the blood vessels and blood supply to the brain. In order, diagnose and study the abnormalities in the cerebrovascular system, accurate segmentation methods can be used. The shape, direction and distribution of blood vessels can be studied using automatic segmentation. This will help the doctors to envisage the cerebrovascular system. Due to the complex shape and topology, automatic segmentation is still a challenge to the clinicians. In this paper, some of the latest approaches used for segmentation of magnetic resonance angiography images are explained. Some of such methods are deep convolutional neural network (CNN), 3dimentional-CNN (3D-CNN) and 3D U-Net. Finally, these methods are compared for evaluating their performance. 3D U-Net is the better performer among the described methods.


2019 ◽  
Vol 9 (3) ◽  
pp. 569 ◽  
Author(s):  
Hyunho Hwang ◽  
Hafiz Zia Ur Rehman ◽  
Sungon Lee

Skull stripping in brain magnetic resonance imaging (MRI) is an essential step to analyze images of the brain. Although manual segmentation has the highest accuracy, it is a time-consuming task. Therefore, various automatic segmentation algorithms of the brain in MRI have been devised and proposed previously. However, there is still no method that solves the entire brain extraction problem satisfactorily for diverse datasets in a generic and robust way. To address these shortcomings of existing methods, we propose the use of a 3D-UNet for skull stripping in brain MRI. The 3D-UNet was recently proposed and has been widely used for volumetric segmentation in medical images due to its outstanding performance. It is an extended version of the previously proposed 2D-UNet, which is based on a deep learning network, specifically, the convolutional neural network. We evaluated 3D-UNet skull-stripping using a publicly available brain MRI dataset and compared the results with three existing methods (BSE, ROBEX, and Kleesiek’s method; BSE and ROBEX are two conventional methods, and Kleesiek’s method is based on deep learning). The 3D-UNet outperforms two typical methods and shows comparable results with the specific deep learning-based algorithm, exhibiting a mean Dice coefficient of 0.9903, a sensitivity of 0.9853, and a specificity of 0.9953.


2019 ◽  
Vol 14 (9) ◽  
pp. 923-930 ◽  
Author(s):  
Natalia Egorova ◽  
Elie Gottlieb ◽  
Mohamed Salah Khlif ◽  
Neil J Spratt ◽  
Amy Brodtmann

Background Cerebrospinal fluid circulation is crucial for the functioning of the brain. Aging and brain pathologies such as Alzheimer’s disease have been associated with a change in the morphology of the ventricles and the choroid plexus. Despite the evidence from animal models that the cerebrospinal fluid system plays an important role in neuroinflammation and the restoration of the brain after ischemic brain injury, little is known about changes to the choroid plexus after stroke in humans. Aims Our goal was to characterize structural choroid plexus changes poststroke. Methods We used an automatic segmentation tool to estimate the volumes of choroid plexus and lateral ventricles in stroke and control participants at three time points (at baseline, 3 and 12 months) over the first year after stroke. We assessed group differences cross-sectionally at each time point and longitudinally. For stroke participants, we specifically differentiated between ipsi- and contra-lesional volumes. Statistical analyses were conducted for each region separately and included covariates such as age, sex, total intracranial volume, and years of education. Results We observed significantly larger choroid plexus volumes in stroke participants compared to controls in both cross-sectional and longitudinal analyses. Choroid plexus volumes did not exhibit any change over the first year after stroke, with no difference between ipsi- and contra-lesional volumes. This was in contrast to the volume of lateral ventricles that we found to enlarge over time in all participants, with more accelerated expansion in stroke survivors ipsi-lesionally. Conclusions Our results suggest that chronic stages of stroke are characterized by larger choroid plexus volumes, but the enlargement likely takes place prior to or very early after the stroke incident.


2021 ◽  
pp. 097275312199017
Author(s):  
Mahender Kumar Singh ◽  
Krishna Kumar Singh

Background: The noninvasive study of the structure and functions of the brain using neuroimaging techniques is increasingly being used for its clinical and research perspective. The morphological and volumetric changes in several regions and structures of brains are associated with the prognosis of neurological disorders such as Alzheimer’s disease, epilepsy, schizophrenia, etc. and the early identification of such changes can have huge clinical significance. The accurate segmentation of three-dimensional brain magnetic resonance images into tissue types (i.e., grey matter, white matter, cerebrospinal fluid) and brain structures, thus, has huge importance as they can act as early biomarkers. The manual segmentation though considered the “gold standard” is time-consuming, subjective, and not suitable for bigger neuroimaging studies. Several automatic segmentation tools and algorithms have been developed over the years; the machine learning models particularly those using deep convolutional neural network (CNN) architecture are increasingly being applied to improve the accuracy of automatic methods. Purpose: The purpose of the study is to understand the current and emerging state of automatic segmentation tools, their comparison, machine learning models, their reliability, and shortcomings with an intent to focus on the development of improved methods and algorithms. Methods: The study focuses on the review of publicly available neuroimaging tools, their comparison, and emerging machine learning models particularly those based on CNN architecture developed and published during the last five years. Conclusion: Several software tools developed by various research groups and made publicly available for automatic segmentation of the brain show variability in their results in several comparison studies and have not attained the level of reliability required for clinical studies. The machine learning models particularly three dimensional fully convolutional network models can provide a robust and efficient alternative with relation to publicly available tools but perform poorly on unseen datasets. The challenges related to training, computation cost, reproducibility, and validation across distinct scanning modalities for machine learning models need to be addressed.


2017 ◽  
Author(s):  
Antonino Paolo Di Giovanna ◽  
Alessandro Tibo ◽  
Ludovico Silvestri ◽  
Marie Caroline Müllenbroich ◽  
Irene Costantini ◽  
...  

ABSTRACTThe distinct organization of the brain’s vascular network ensures that it is adequately supplied with oxygen and nutrients. However, despite this fundamental role, a detailed reconstruction of the brain-wide vasculature at the capillary level remains elusive, due to insufficient image quality using the best available techniques. Here, we demonstrate a novel approach that improves vascular demarcation by combining CLARITY with a vascular staining approach that can fill the entire blood vessel lumen and imaging with light-sheet fluorescence microscopy. This method significantly improves image contrast, particularly in depth, thereby allowing reliable application of automatic segmentation algorithms, which play an increasingly important role in high-throughput imaging of the terabyte-sized datasets now routinely produced. Furthermore, our novel method is compatible with endogenous fluorescence, thus allowing simultaneous investigations of vasculature and genetically targeted neurons. We believe our new method will be valuable for future brain-wide investigations of the capillary network.


Sign in / Sign up

Export Citation Format

Share Document